
1

1 What is .NET?

At the beginning of 2002, after several years of research and development, Micro-
soft brought .NET (pronounced: dot net) to market. .NET is not an operating sys-
tem in the narrow sense of the word and so it is not a successor to Windows. It is
more a layer on top of Windows (and perhaps on other operating systems in the
future). It mainly adds the following two things:

q A run-time environment that offers automatic garbage collection, security,
versioning and, above all, interoperability between programs written in dif-
ferent languages.

q An object-oriented class library, providing a rich set of functionality for
graphical user interfaces (Windows forms), web interfaces (web forms), da-
tabase connectivity (ADO.NET), collections, threads, reflection and much
more. In many cases it replaces the current Windows API and goes beyond
it.

However, .NET is more than that. It is an open platform that Microsoft developed
to merge diverging streams of software development and thus to offer their clients
a uniform technology again.

q Web applications (for example online stores) are currently developed with a
technology that differs from that with which desktop applications are writ-
ten. Desktop applications are programmed with compiled languages such
as C++ or Pascal and make use of object-oriented class libraries and frame-
works. Web applications, on the other hand, are written in HTML, ASP,
CGI and interpreted languages such as JavaScript or PHP. With .NET both
styles of applications can now be developed with the same techniques, for
example, with compiled languages such as C# or Visual Basic .NET, as well
as with a comprehensive object-oriented class library.

q In recent years, organizations have invested a great deal of money in soft-
ware developed in various languages such as C++, Visual Basic or Fortran.
They don’t feel like throwing these investments away. They are much more
interested in seeing programs that have been written in different languages
working together smoothly. .NET makes this possible with an unprece-
dented degree of interoperability.

2 1 What is .NET?

q Recently there has been a huge growth in the use of small computers such
as hand-helds, palmtops and systems with embedded micro-controllers.
Special languages and operating systems have been developed for them too.
With .NET they can be programmed with the same languages and libraries
as PCs and web servers. This allows the development of software for mo-
bile and embedded systems to move closer to conventional programming.

A field that has had an underrated role so far is that of distributed systems that co-
operate via the Internet to perform tasks that cannot be done locally. In the future
such systems will have a much greater significance. For this sort of work .NET of-
fers web services. Web services are implemented by means of remote procedure
calls and work together by using XML and protocols such as HTTP.

.NET also makes a range of tools available, the most prominent of which is
Visual Studio .NET. This is a multi-language development environment with a de-
bugger and a GUI designer that is specially developed for use with web forms or
web services.

Under the title .NET Microsoft also subsumes various servers such as the SQL
Server™ [MSSQL] or the BizTalk™ Server [MSBiz] as well as a range of ready-made
services such as the .NET Passport service [Pass], that provide frequently needed
information and operations via web services.

So what then is .NET? It is a concerted set of system components, libraries,
tools, web services and servers that is hard to define in a single sentence. In com-
bination it aims to make the programming of Windows and web applications
more straightforward and more uniform. Software development under .NET is
radically different from the current style of programming for Windows and the
web. It is simpler, safer and more elegant. However, one must be prepared to learn
new APIs and new concepts.

1.1 The .NET Framework

The .NET Framework forms the core of the .NET technology (see Fig 1.1). It con-
sists of a run-time environment and an object-oriented class library that covers all
areas of Windows and web programming. With this comes the new programming
language C# that has been specially designed for .NET. This chapter will briefly
describe the various parts of the framework. The remaining chapters of the book
look at each topic in more detail.

1.1 The .NET Framework 3

Figure 1.1 Outline of the .NET Framework architecture

Common Language Runtime

The Common Language Runtime (CLR) is the run-time environment under which
.NET programs are executed. It provides, among other things, garbage collection,
security and interoperability.

Similarly to the Java environment, the CLR is based on a virtual machine,
with its own instruction set (CIL - Common Intermediate Language) into which
programs written in any .NET language are translated. Just before they are run,
CIL programs are compiled (just in time) into the code of the target machine. The
CIL code guarantees interoperability between different languages as well as code
portability. JIT compilation (just-in-time compilation), on the other hand, ensures
that programs are nonetheless efficient.

However, for different languages to be able to cooperate it is not enough for
them just to be translated into CIL. They must also use the same sort of data types.
Therefore the CLR defines a Common Type System (CTS) that describes how
classes, interfaces and primitive types are represented. The CTS not only allows a
class, implemented in C#, to be used in a Visual Basic .NET program, but it even
allows the C# class to be extended by a subclass written in Visual Basic .NET. Sim-
ilarly, an exception raised by a C# program can be handled by a program written
in any other .NET language.

The Common L anguage Specification (CLS) is the minimal subset of the CTS
that all languages must support if they wish to make use of .NET's language in-
teroperability. At the moment there are more than 20 such languages, both from
industry and from academia. Alongside the Microsoft languages such as C#, Vi-
sual Basic .NET and Managed C++ are Fortran, Eiffel, Java, ML, Oberon, Pascal,
Perl, Python and Smalltalk. Managed C++ is a variant of C++ that is translated
into managed code that runs under the control of the CLR.

The CLR offers mechanisms for making .NET programs safer and more ro-
bust. Among these are the garbage collector, which is responsible for reclaiming

Operating system (Windows, ...)

Common Language Runtime

garbage
collection security

just-in-time
compilation

...

Base Class Library

ADO.NET ...ASP.NET web services

Applications

4 1 What is .NET?

the storage of objects once they are no longer needed. In older languages such as C
and C++ the programmer himself was responsible for freeing this space. So it
could happen that an object's space was freed when it was still in use by other ob-
jects. This left the other objects staring into a void and could lead to unrelated
storage areas being destroyed. Similarly a programmer could forget to release the
space of an object. This then remained in the memory as a memory leak, wasting
space. Such errors are hard to find but, thanks to the garbage collector, can never
occur under .NET.

When a program is loaded and translated into machine code the CLR uses a
verifier to check that the type rules of the CTS have not been violated. For exam-
ple, it is illegal to treat a number as an address and use it to access storage areas
that belong to other programs.

The CLR defines a common platform for all .NET programs irrespective of
what language they are written in and what machine they run on. A system of well
thought-out rules ensures that all programs have the same view of types and meth-
ods, and that method calls, exceptions and threads are all handled in the same
way. The CLR as a part of the .NET architecture is described in Chapter 3.

Assemblies

.NET supports component-based software development. The components are
called assemblies and are the smallest units that can be individually deployed. An
assembly is a collection of classes and other resources (for example, images). It is
stored either as an executable EXE file or as a DLL file (Dynamic Link Library).
In some cases an assembly is even made up of multiple files.

Each assembly also contains metadata in addition to code. The metadata
holds the full type information of the classes, fields, methods and other program
elements in the assembly. An assembly also contains a manifest, which can be
thought of as a table of contents. Thus assemblies are self-describing and can be
inspected and used by loaders, compilers and other tools, by means of reflection.

Assemblies are also used for version control. Each has a multi-level version
number that also applies to all the classes within the assembly. When a class is
compiled, the version numbers of referenced classes are recorded in its object
code. The loader then asks for those classes (i.e. assemblies) that correspond to the
expected version numbers.

Under .NET several DLLs with the same name but different version numbers
can coexist without getting in the way of each other. This spells the end of the
"DLL hell" under Windows, where the installation of new software could cause
old DLLs to be overwritten by new ones with the same names so that existing soft-
ware would suddenly cease to work.

1.1 The .NET Framework 5

Assemblies do not have to be recorded in the Windows registry. They are sim-
ply copied into the application directory or into the so-called global assembly
cache and they are equally easy to remove when they are no longer needed.

Assemblies are effectively the successors of COM components. Unlike under
COM (Component Object Model) one doesn't have to describe them via an IDL
(Interface Definition Language), because they contain comprehensive metadata
that has been gathered by the compiler from the source code. The common type
system guarantees that software written in different languages uses the same sort
of metadata and is thus binary compatible. However, investment in COM compo-
nents is not lost. It is still possible to use COM components from .NET classes and
vice versa.

The Language C#

Although .NET programs can be written in many different languages, Microsoft
has developed a new "in-house" language that fully exploits the power of the
CTS. C# is an object-oriented language that looks like Java at first sight but goes
beyond Java in its capabilities.

C# supports single code inheritance and multiple interface inheritance. It facil-
itates the development of components in the sense of component-oriented pro-
gramming by providing properties, events and delegates. All types in C# (and in
other .NET languages) form a uniform type system that allows primitive types
such as numbers and characters to be treated as objects. In addition to reference
types, such as classes and arrays, there are also value types that do not get stored
on the heap but on the method stack. This relieves the garbage collector from
keeping track of those objects and so makes the programs more efficient.

Number-crunching applications often work with multi-dimensional arrays.
Unlike in Java, such arrays can be stored in contiguous memory locations in C#.
This increases the efficiency of such applications.

User-defined indexing operators (so-called indexers) allow accessing the ele-
ments of lists and other collections with the familiar array-index notation. A new
loop construct—the foreach loop—makes working with such object collections
particularly simple and readable.

C# is one of the first languages that can be extended by using so-called at-
tributes. Attributes are metadata that can be attached to almost all program ele-
ments (classes, fields, methods, parameters etc) and that can be queried at run
time by means of reflection. This is how conditional compilation, serialization of
objects, COM interoperability and other useful mechanisms are implemented in
.NET.

Reflection does not only allow access to attributes but also to other metadata.
One can, for example, discover at run time what methods a class has. It is even
possible to call methods or to access fields whose names were still unknown at

6 1 What is .NET?

compile time. This makes it straightforward to implement debuggers, analysis
tools and test environments.

Other notable features of C# are exception handling , operator overloading
and user-defined conversion operators between different types.

Many of the characteristics of C# are also found in other languages. So C# is
not revolutionary but, rather, a mixture of the best features of other programming
languages. It is a practically-oriented selection of modern sofware engineering
concepts that every .NET programmer needs. Therefore C# has a chapter of this
book dedicated to it.

The Base Class Library

The Base Class Library (BCL) contains the most important classes of .NET and
can be used by all .NET languages. It provides functionality for a wide range of
purposes. In most cases it supersedes the current Windows APIs that were infa-
mous for their complexity and inconvenience. However, it is still possible to call
classical Windows functions from .NET. The BCL is divided into namespaces,
each of which deals with a particular functionality. Among the most important
namespaces are the following:

q System.Collections contains classes that manage collections of objects. These
include lists, sets, trees, dynamic and associative arrays and hash tables.

q System.IO contains classes for input and output including general data
streams, files, directories as well as formatted input and output of data.

q System.Threading provides classes for parallel programming. Among these
are threads and thread pools as well as synchronization mechanisms such as
semaphores and monitors.

q System.Net is deals with network programming. It includes sockets and net-
work streams, protocols, such as HTTP and the corresponding request and
response classes as well as cookies.

q System.Reflection allows access to metadata and thus to run-time type infor-
mation. It contains classes such as Assembly, Type, MemberInfo, or
MethodInfo that can be used not only to get information about programs but
also to manipulate them dynamically. It is even possible to create and exe-
cute programs at run time.

q System.Windows.Forms is concerned with graphical user interfaces. There
are classes for windows, dialogs and other user-interface elements. This
namespace is one of the richest and most complex parts of the BCL and
largely replaces the Microsoft Foundation Classes . Visual Studio .NET
makes it possible to build graphical user interfaces by drag-and-drop and to
install methods that will react to user input.

1.1 The .NET Framework 7

q System.XML contains classes for the creation and reading of data in XML
(Extensible Markup Language [XML]) format. XML plays an important
role in web services and other parts of .NET.

This core of the BCL is discussed in Chapter 4. Further important namespaces are
System.Web that is used for programming dynamic web pages under ASP.NET,
and System.Data that contains classes for accessing databases under ADO.NET.
Both of these are described in their own chapters of this book.

ADO.NET

ADO.NET comprises all the classes of the .NET library that are concerned with
accessing databases and other data sources (such as XML files). In contrast to its
predecessor technology ADO (ActiveX Data Objects) ADO.NET is object-ori-
ented and therefore more structured and straightforward to use.

ADO.NET supports the relational data model, with transactions and locking
mechanisms. Therefore it is independent of different data providers and database
architectures. The differences between concrete data sources like MS SQL Server,
OLE DB (Object Linking and Embedding Database) and ODBC (Open Database
Connectivity) is abstracted away with common interfaces.

Database access can be connection-oriented or connectionless. In the first
case, a permanent connection to a data source is established. In the second, a
snapshot of a part of the database is fetched into a DataSet object and then pro-
cessed locally. In both cases the data can be accessed by SQL statements (Struc-
tured Query Language). ADO.NET is described in Chapter 5 of this book.

ASP.NET

ASP.NET is the part of the .NET technology that deals with programming dy-
namic web pages. Its name is reminescent of the predecessor technology ASP (Ac-
tive Server Pages). However, the programming model is fundamentally different.

With ASP.NET, web pages are constructed dynamically on the server from
current data and are sent to the client in the form of pure HTML, so that any web
browser can display them. In contrast to ASP, ASP.NET uses an object-oriented
model. Web pages, as well as the GUI elements that appear in them, are objects
whose fields and methods can be accessed in programs. All this is done in a com-
piled language such as C# or Visual Basic .NET and not, as in ASP, in an inter-
preted language such as JavaScript or VBScript. Thus web pages can take advan-
tage of the entire class library of .NET.

User input is handled in an event-driven way. When a user fills out a text field,
clicks a button or selects an item from a list, this raises an event that can be han-
dled by code on the server side. Although the server is stateless—as is usual for the

8 1 What is .NET?

Internet—state information is retained automatically between individual user in-
teractions, in fact in the HTML code itself. This represents a considerable simpli-
fication over the former programming model, where the programmer himself was
responsible for maintaining state information.

ASP.NET offers a rich library of GUI elements that go far beyond what is sup-
ported by HTML, although all GUI elements are eventually translated to HTML.
Programmers can even build their own GUI elements and thus adapt the user in-
terface of their web pages to their particular needs. It is particularly straightfor-
ward to display the results of database queries as lists and tables, since ASP.NET
has largely automated this. Validators are a further new feature. They allow user
input to be checked for validity.

Authentication of user access to protected web pages is supported by various
methods, ranging from standard Windows authentication through cookie-based
authentication to Microsoft's external passport authentication service.

Visual Studio .NET allows the user interface of a web page to be built interac-
tively, in a way familiar from the development of desktop applications. GUI ele-
ments can be dragged into windows with the mouse. Values of properties can be
assigned using menus and property windows, and methods can be specified that
will be called in response to user input. All this sweeps away the difference be-
tween programming desktop applications and web applications and simplifies the
development of online stores and pages that show frequently updated information
(for example, stock data). ASP.NET is treated in depth in Chapter 6 of this book.

Web Services

Web services are regarded as a core of the .NET technology, although they also ex-
ist outside .NET. They work via remote method calls using textual protocols such
as H TTP and SOAP (an application of XML).

The Internet has proved itself to be tremendously powerful for accessing infor-
mation and services distributed around the world. Currently, access is mainly
through web browsers such as Internet Explorer or Netscape Navigator. Web ser-
vices, on the other hand, allow a new style of cooperation between applications by
making them communicate without web browsers. Ordinary desktop applications
can fetch information such as current exchange rates or booking data from one or
more web services that are running as methods of applications on other computers
and which respond over the Internet.

The calls and their parameters are generally coded to conform to SOAP, an
XML-based standard that is supported by most large firms. Programmers need to
know nothing of this. They call a web service in just the same way as a normal
method and .NET takes care of translating the call into SOAP, sending it over the
Internet and decoding it on the target machine. On the target machine the chosen
method is invoked and its result is transmitted back to the caller transparently,

1.2 What Does .NET Offer? 9

again using SOAP. The caller and the callee can therefore be written in quite dif-
ferent languages and can run under different operating systems.

In order for .NET to be able to carry out the coding and decoding correctly,
the web services, together with their parameters, are described in WSDL (Web Ser-
vices Description Language). This is also done automatically by .NET.

Microsoft expects that there will be countless web services worldwide that
will offer useful information. To find the right web service, UDDI (Universal De-
scription, Discovery and Integration) has been developed. This can be regarded as
an address book that helps find the appropriate service for a particular require-
ment. Thus UDDI takes over the role of a search engine for web services. Web ser-
vices are described further in Chapter 7.

1.2 What Does .NET Offer?

Compared to current Windows and web programming .NET contains many new
features. But what tangible benefits does it offer? How is .NET useful to program-
mers and users?

Robustness and Safety

Type checking and verification of CIL code make sure that programs cannot per-
form illegal instructions and so cannot, for example, access the memory of other
programs or manipulate pointers. The garbage collector guarantees that there will
not be any storage reclamation errors. All this eliminates the majority of the prob-
lems that used to bring programmers to the brink of despair.

The versioning of assemblies permits DLLs of the same name to coexist and
avoids the complications that can arise when an old DLL is overwritten by a new
one. Some call it the end of "DLL Hell".

System administrators can not only define access rights for individual persons
(role-based rights) but also for particular parts of code (code-based rights), which
are checked regardless of who is running the code. Assemblies can be signed using
public key cryptography so as to be sure that they are in their original form and
have not been altered or extended later. This significantly reduces the problem of
viruses.

Simple Installation and De-installation of Software

Software is installed under .NET simply by copying all the program files into a di-
rectory. DLLs no longer have to be kept in a global system directory nor recorded
in the Windows registry. Assemblies that are used by many programs can be
stored in the so-called Global Assembly Cache in which there can also be several

10 1 What is .NET?

DLLs with the same name but different version numbers. De-installation is equally
easy. The files are simply deleted from the disk. No registry entry or other remnant
is left behind.

Interoperability

Under .NET the various parts of a program do not all have to be written in the
same language. For each part the appropriate language can be chosen—for exam-
ple, Managed C++ might be used for the system level parts, C# or Visual Basic
.NET for the user interface, and ML for those parts that are best expressed in a
functional language.

Program parts written in different languages can work together seamlessly,
thanks to the common language runtime and its common type system. Not only is
it permissible to call methods from another language, but it is also possible, for ex-
ample, to create in Visual Basic .NET an object of a class that has been declared in
Eiffel, or to handle in a C# program an exception that has been thrown in a Man-
aged C++ program.

The object-oriented programming model defined by the common type system
assists the development of software that is object-oriented and thus modular, ex-
tensible and easy to maintain.

Uniform Software for Desktop and Web

With .NET, object-oriented programming is now available for web programming
in the same way as it has been in desktop programming for many years. Web
pages and their contents are objects with fields and methods that can be used in
server page code. Cryptic mixtures of HTML and script code, as were usual with
ASP, are a thing of the past. Furthermore, web services make accesses to programs
that run on remote computers appear as conventional method calls.

Thus, software development techniques for desktop and web applications,
which have diverged in recent years, come closer together again under .NET.

Standards

Although the .NET technology originated at Microsoft, its core consists of several
open standards. The ECMA standard 335 [CLI], for example, defines the Com-
mon Language Infrastructure (CLI), including the CLR and part of the BCL. The
ECMA standard 334 [C#Std] defines the language C#. SOAP is based on the W3C
standards for HTML and XML. It is itself presented as an IETF standard (Internet
Engineering Task Force) [SOAP]. WSDL will also become a W3C standard
[WSDL]. Finally, UDDI is a de facto standard that is supported by more than 200

1.3 Differences from Java 11

firms, including Boeing, Cisco, Fujitsu, Hitachi, HP, IBM, Intel, Microsoft, Ora-
cle, SAP and Sun [UDDI].

1.3 Differences from Java

.NET bears considerable resemblance to Java and so is often compared with it. As
with Java, .NET is based on a virtual machine that presents a run-time environ-
ment into whose code all programs are translated.

Whereas CIL programs are always translated into machine code, programs in
Java bytecode are initially interpreted. Only when a Java method has been called a
certain number of times does it get translated into machine code by a background
task. This has the advantage that Java programs can start up immediately in the
interpreted mode. Under .NET the JIT compiler must always run first and so a
program experiences some tenths of a second delay when it is called for the first
time. On the positive side, however, there is no need for an interpreter under
.NET. The designers of the CIL code also had more degrees of freedom because
the CIL code was never intended for interpretation.

At first sight, the languages Java and C# are very similar. Indeed there are dia-
lects of Pascal that differ from one another more than C# does from Java. Closer
inspection, however, shows C# to be more powerful than Java, even given that
many C# features are mere syntactic sugar and can also be accomplished in Java in
some way or another. For example, C# has a uniform type system. It offers value
types as well as reference types, has reference parameters and many other useful
features such as properties, indexers, enumerations, delegates and attributes. On
the other hand, Java is simpler and stricter: There is, for example, no notion of
code parts being marked as "unsafe", meaning that type rules can be quietly bro-
ken there. Java is also stricter regarding exceptions. It insists that the programmer
must always handle them, which is not the case in C#.

The class library of Java and .NET are very similar, indeed so much that the
names of many classes and methods are the same in both systems.

In place of ASP.NET, Java has a technology called JSP (Java Server Pages) that
is in turn derived from the old ASP technology. As in .NET, JSP pages are trans-
lated into classes (servlets) that generate a specific HTML stream for the client.
The main difference between JSP and ASP.NET is the fact that under .NET there is
a clean separation between the HTML description of a web page and its program
code. Under .NET, they can be in different files whereas in Java the HTML code is
mixed up with the Java code fragments. In addition, the state management of a
page, the object-oriented access to GUI elements and the event-driven style of re-
acting to user input are better engineered under ASP.NET.

For web services there is also a corresponding Java technology from Sun Mi-
crosystems called ONE (Open Network Environment [ONE]). As with web ser-
vices under .NET, it is based on SOAP, WSDL, and UDDI. Web services under

12 1 What is .NET?

.NET, however, are more closely integrated into the system than in Java. Here
Microsoft is slightly ahead.

The main difference between Java and .NET lies in the different objectives of
these systems. Whereas Java aims to support a single language on many different
operating systems, .NET has the exactly opposite aim, namely, to support many
different languages on a single platform. Just because the platform is currently
called Windows does not mean that it must always be that way. There are already
implementations of .NET for other operating systems (for example, Linux and
FreeBSD) and other processors (for example, SPARC and PowerPC) [Mono].
However, the best support of .NET is likely always to be under Windows.

1.4 Further Reading

This book gives an overview and introduction to the whole of the .NET technol-
ogy. For the individual aspects of .NET (for example, CLR, C#, ASP.NET, or web
services) there are specialized books that treat them in considerably more detail
than is possible here. Some of these books are listed in the bibliography.

There are also numerous online sources, from introductions, through tutori-
als, to detailed specifications. New developments are picked up and described
more rapidly through the Internet than is possible in the printed form. Some of the
more important .NET portals are listed here:

q www.microsoft.com/net/
This is Microsoft's official .NET site, with general information about .NET,
specifications and example programs. The latest version of the .NET
Framework SDK can be downloaded from here. It contains the CLR, the
base class library, compilers for C# and other languages, but not, however,
Visual Studio .NET.

q msdn.microsoft.com/net/
This is the site of the Microsoft Developer Network, with all kinds of tech-
nical information on various aspects of .NET.

q www.gotdotnet.com
Another rich source of examples, articles and other useful information
about .NET.

q www.devhood.com
A site with many examples, tutorials and training modules on .NET.

q www.iBuySpy.com

A well-documented example of a web-shop implementation with ASP.NET.
q dotnet.jku.at

This is the web site for this book, with sample solutions for the exercises,
the source code of all the examples in this book, as well as links, tools and
various information on .NET.

1.4 Exercises 13

One of the most useful sources for .NET is the online documentation [SDKDoc]
that comes with the .NET Framework SDK (see the CD in this book). It contains
introductory texts, tutorials, examples and detailed specifications. In particular,
the reference documentation is an indispensable companion for all .NET develop-
ers. The documentation is thorough and readable. With this book as a guide and
the online reference documentation it should not be difficult to become an expert
in all details of the .NET Framework.

1.4 Exercises

1. Getting started. Install the .NET software development kit (SDK) from the CD
that comes with this book. Look at the documentation that can be opened by
Start | Programs | Microsoft .NET Framework SDK | Documentation and browse
through the pages named Getting Started.

2. Common language runtime. What services does the .NET common language
runtime provide on top of the services that are offered by Windows? What are
the benefits of these services?

3. .NET versus Java. Which features of the .NET Framework resemble those of
the Java environment? Which features are not supported by Java?

4. C#. Which software engineering principles are supported by C#? How does
this language help in the development of large software systems?

5. Assemblies . Why are .NET assemblies easier to install and to deinstall than
COM objects?

6. ASP.NET. What are the major differences between ASP.NET and the older ASP
technology?

7. Web services. Describe several scenarios in which web services could be useful.

8. Web search. Visit the web sites www.microsoft.com/net, msdn.microsoft.com/net,
www.gotdotnet.com and www.devhood.com and look at the information they of-
fer about .NET. The web site www.go-mono.com describes the port of .NET to
the Linux operating system.

