
6 Statements 43

6 Statements

The statements of C# do not differ very much from those of other programming
languages. In addition to assignments and method calls there are various sorts of
selections and loops, as well as branch statements and statements for exception
handling . We will explain statements using examples. Details of the syntax can be
found in Appendix A.3.

6.1 Empty Statement

Every non-structured statement in C# must be terminated by a semicolon. A sem-
icolon by itself is an empty statement that indicates no action and is used, for ex-
ample, to express an empty loop body.

6.2 Assignment

An assignment evaluates an expression and assigns its value to a variable. The as-
signment itself is also an expression, so multiple assignments are possible:

x = 3 * y + 1; // x becomes 3 * y + 1
a = b = 0; // multiple assignment: a and b both get the value 0

The type of the expression must be assignment compatible with the type of the
variable. This means that the two types must be the same or the type of the varia-
ble must include the type of the expression as set out in Fig. 3.2 (for example, short
values may be assigned to int variables). Assignment compatibility also applies if
the type of the expression is a subclass of the variable type (see Chapter 9).

Assignments can be combined with various binary operators. For example:

x += y;

is a short form for

x = x + y

These short forms are useful in the case where x is a composite name (e.g. a[i].f).
They reduce the typing effort and make it easier for the compiler to optimize an

44 6 Statements

assignment. Combined assignments are possible with the operators +=, -=, *= , /=,
%= , <<=, >>=, &=, |= and ^=.

6.3 Method Call

A method is called through its name and a parameter list. The details of method
calls are covered in Section 8.3. Here are some examples of calls with methods of
class String:

string s = "a,b,c";

string[] parts = s.Split(’,’); // calls the non-static method s.Split

s = String.Join (" + ", parts); // calls the static method String.Join
char[] arr = new char[10];

s.CopyTo(0, arr, 0, s.Length);

As Section 8.3 will show, methods can be static or non-static. A non-static method
(for example Split) is applied to a specific object (for example s). s.Split(’,’) returns
the substrings of s which are delimited by occurrences of ’,’ (here "a", "b" and "c").

A static method (e.g. Join) is not applied to an object but to a class (e.g. String).
It is comparable with an ordinary function in C. For example, String.Join(" + ",

parts) concatenates the strings in the array parts together with " + ". The result
here is "a + b + c".

Both Split and Join are function methods. They are called as operands in ex-
pressions and return a value. However, there are also methods that do not deliver
a function result. They have the method type void and are called as stand-alone
statements. For example, s.CopyTo(from, arr, to, len) copies len characters of the
string s starting at the position from into the array arr beginning at the position to.

6.4 if Statement

An if statement has the form

if (BooleanExpression) Statement else Statement

If the Boolean expression is true, the then branch (the first statement) is executed,
otherwise the else branch (the second statement). The else branch may be omitted.
If the then branch or the else branch consists of several statements then they must
be written as a statement block in braces. Here are some examples of if state-
ments:

if (x > max) max = x; // without else branch

if (x > y) max = x; else max = y; // with else branch

if (’0’ <= ch && ch <= ’9’)
val = ch - ’0’;

else if (’A’ <= ch && ch <= ’F’) // nested if

6 Statements 45

val = 10 + ch - ’A’;

else { // else branch consists of a statement sequence

val = 0;
Console.WriteLine("invalid character: " + ch);

}

In contrast to C and C++, the if expression must be of type bool. In particular, it is
not permissible to interpret the value 0 or null as false.

6.5 switch Statement

The switch statement is a multi-way selection. It consists of an expression and sev-
eral statement sequences each prefixed by case labels. The switch statement
branches to the case label that corresponds to the value of the expression. If there
is no matching case label it jumps to the default label and if there is none then to
the end of the switch statement. Here is an example:

switch (country) {

case "England": case "USA":
language: = "English";

break;

case "Germany": case "Austria": case "Switzerland":
language = "German";

break ;

case null:
Console.WriteLine("no country specified");

break;

default:
Console.WriteLine("don’t know language of " + country);

break;

}

The expression in the head of the switch statement must be numeric, an enumera-
tion or of the type char or string . The case labels must be disjoint constant values
whose type must be assignment compatible with the type of the expression.

In contrast to most other languages, C# allows the switch expression to be of
type string (including case labels with the value null). In this case the switch state-
ment is treated by the compiler as a series of nested if statements, whereas in the
other cases it is implemented as a direct jump to the matching case label.

Each statement sequence between the case labels must end with a statement to
break out. The most common of these is the break statement which jumps to the
end of the switch statement. Other statements allowed are return, goto and throw.
We discuss these later. In contrast to most other languages, C# does not allow a
program to fall through a (non-empty) case branch to the next. If this is what we
want we must implement it with a goto statement.

46 6 Statements

6.6 while Statement

The while statement is the most common form of loop. It consists of a Boolean ex-
pression and a loop body which is repeatedly executed as long as the expression
remains true. The expression is tested before each execution of the loop body. If
the loop body consists of more than one statement then it must be written as a
statement block in braces.

while (x > y) x = x / 2; // loop body consists of a single statement
while (i < n) { // loop body consists of a statement sequence

sum += i;

i++;
}

6.7 do-while Statement

The do-while statement differs from the while statement only in that the Boolean
expression is tested after the loop body. This means that the loop body is executed
at least once.

do i = 10 * i while (i < n); // loop body consists of a single statement

do { // loop body consists of a statement sequence

sum += a[i];
i--;

} while (i >= 0);

6.8 for Statement

The for statement is the most flexible but also the most complicated form of loop.
It has the form:

for (Initialization; Condition; Increment) Statement

Before the first run through the loop the initialization is executed. This usually as-
signs a value to a loop variable. Before each execution of the loop the condition is
tested and at the end of each iteration the incrementation is carried out. The loop
body is executed as long as the condition is true. The statement

for (int i = 0; i < n; i++)
sum += i;

can be regarded as a short form of the while loop

int i = 0;
while (i < n) {

sum += i;

i++;
}

6 Statements 47

It is treated by the compiler in exactly the same way as the while loop (except that
i is local to the for loop). Both the initialization and the incrementation can com-
prise more than one statement. These are then separated by a comma instead of
being terminated by a semicolon. For example:

for (int i = 0, j = n-1 ; i < n ; i++, j--)

sum += a[i] + b[j];

6.9 foreach Statement

The foreach statement offers a convenient way of iterating through an array, a
string or some other collection of elements that implements the ICollection inter-
face (see Section 18.2). It has the form:

foreach (ElementVarDecl in Collection) Statement

Here are two examples of foreach statements:

int[] a = {3, 17, 4, 8, 2, 29};

sum = 0;
foreach (int x in a) sum += x;

string s = "Hello";
foreach (char ch in s) Console.WriteLine(ch);

The first loop sums the elements of the array a. The second prints all the charac-
ters of the string s. The following example is also interesting:

Queue q = new Queue();

q.Enqueue("John"); q.Enqueue("Alice"); ...
foreach (string s in q) Console.WriteLine(s);

The elements of a queue are stored as data of type object. The compiler knows,
however, that the loop variable s is of type string. Therefore it generates a checked
type cast from object to string when it retrieves the elements from q. The variable
of a foreach loop can only be accessed for read operations.

6.10 break and continue Statements

We have already seen the break statement in the context of the switch statement.
However, it can also be used to terminate the execution of a loop:

for (;;) {

int x = stream.ReadByte();
if (x < 0) break ;

sum += x;

}

48 6 Statements

This example shows the use of a for statement as an endless loop. If the initializa-
tion part, the condition and the incrementation part are omitted then the loop cy-
cles forever—or until, as in this case, it is terminated by executing a break state-
ment. The break statement can also be used in while, do-while and foreach loops.
With nested loops, however, it only leaves the innermost loop. In order to break
right out of a nested loop structure a goto statement must be used.

The continue statement (written as continue;) may likewise be used in any
kind of loop. It indicates that the rest of the loop body should be skipped, any in-
crementation part should be carried out (only in for loops) and the continuation
condition should be tested again before the next run through the loop begins.

6.11 goto Statement

The goto statement jumps to a label that is written in front of another statement.
The label consists of a name followed by a colon. For example, the do-while state-
ment could also be coded by means of a goto and a label:

top: // do {

sum += i; // sum += i;
i++; // i++;

if (i <= n) goto top; // } while (i <= n);

This is however not recommended because it obscures the structure of the pro-
gram. A sensible use of a goto statement is, for example, to break out of an inner
loop, because this cannot be done with a break statement.

Because the unrestricted use of the goto statement can have a negative impact
on the quality of a program there are certain restrictions pertaining to jumps: al-
though it is possible to break out of a block (if there is an error, for example), it is
not possible to break into a block. It is also illegal to break out of a finally block
(see Chapter 12). Breaking out of a try statement (see Chapter 12) means that the
finally block is executed first.

Goto statements can also be used within a switch statement to jump to a case
label. This is a sensible use of a goto because it allows the efficient implementation
of so-called finite-state machines. A finite-state machine consists of states with
transitions between them, which can be triggered when defined symbols are read.
Fig. 6.1 shows a finite-state machine, with circles representing the states and ar-
rows representing the transitions.

Fig. 6.1 Finite-state machine

0 21
a c

b

c

6 Statements 49

This state machine can be implemented in the following way by using goto state-
ments:

int state = 0; // starts in state 0
int ch = Console.Read(); // reads first input symbol

switch (state) {

case 0: if (ch == ’a’) { ch = Console.Read(); goto case 1; }
else if (ch == ’c’) goto case 2;

else goto default;

case 1: if (ch == ’b’) { ch = Console.Read(); goto case 1; }
else if (ch == ’c’) goto case 2;

else goto default;

case 2: Console.WriteLine("input valid!");
break;

default: Console.WriteLine("illegal character: " + (char) ch);

break;
}

It would be even shorter in this case to discard the switch statement and jump di-
rectly to labels named state0, state1, state2 and illegal.

6.12 return Statement

The return statement allows the (early) termination of methods. It has two forms.
Void methods can be terminated by a return statement without an argument. For
example:

void P(int x) {
if (x < 0) return;

...

}

Of course, the method ends after its last statement even if return is not executed.
Function methods must be dynamically terminated by a return statement that has
the return value as its argument. For example:

int Max(int a, int b) {
if (a > b) return a; else return b;

}

The type of the return value must be assignment compatible with the return type
declared in the method heading. A function method must not reach its end with-
out executing a return statement, because it always has to return a value.

The Main method of a program may also be declared as a function. Its return
value will be interpreted as an error code that is stored in a system variable (the er-

rorlevel variable in Windows).

50 6 Statements

class Test {

static int Main() {

...
if (...) return -1;

...

}
}

6.13 Exercises

1. if statement. Use an if statement to determine the highest of three numbers x, y
and z.

2. switch statement. Convert the switch statement in Section 6.5 into an if state-
ment with else branches.

3. switch statement. Write a switch statement that calculates the number of days
in a given month (ignore leap years). Implement one version in which the
month is given as an integer, and another in which it is given as a string. Use
ildasm to compare the generated code (see Appendix A.2).

4. Loop transformations. Convert the following while loop into a corresponding
do-while loop and a corresponding for loop:

int i = ...;
while (i > 0) { Foo(i); i--; }

5. Search loop. Assume we have an array of numbers called tab. Write a search
loop that returns the index of the value val in the tab array, or 0, if val does not
occur in tab.

